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1 Introduction

We derive a formula for the rotation of a vector in an arbitrary plane that is
applicable to ℜn for all n ≥ 2. Since all general rotations can be decomposed
into a sequence of plane rotations, this formula is applicable to rotations in
general.

Although in ℜ3 every plane of rotation is uniquely defined by an axis, this
is not true in any other dimension. Hence, a better way of defining rotation
is by specifying the plane in which we are rotating, and a point on this plane,
the center of rotation, about which we are rotating.

Formulæ for vector rotation are well-known. Here, however, we desire
a formula applicable to ℜn for all n ≥ 2, and therefore need a formulation
purely in terms of vector operations, and not involving any explicit Cartesian
coordinates.

2 Assumptions

Let v ∈ ℜn be a vector. We shall denote the image of v under rotation in a
plane P by an angle of θ as rotP,θ(v). Without loss of generality, we make
the following assumptions:

1. The actual plane of rotation P is parallel to a plane P0 that passes
through the origin.
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2. The center of rotation C lies in the (n−2)-hyperplane that intersects P0

at the origin. That is, the desired rotation in P about C is isomorphic
via translation to a rotation in the plane P0 about the origin.

3. P0 is the span of two orthogonal unit vectors x,y ∈ ℜn. Since planes of
rotation are always 2-dimensional, x and y are sufficient to fully specify
P0.

4. We define the sense of rotation as rotating x into y. That is,

rotP0,π/2(x) = y

3 Derivation

3.1 Reduction to Rotation in P0

Let θ be the angle by which we wish to rotate v. We shall achieve the rotation
by rotating the projection of v in P0, and then mapping the result back to
plane in which v lies.

Let vp be the projection of v onto P0:

vp = (v · x)x+ (v · y)y (1)

Theorem 1 (v − vp) is orthogonal to P0.

Proof. We show that (v − vp) is orthogonal to x and y.

(v − vp) · x = v · x− vp · x
= v · x− ((v · x)x+ (v · y)y) · x
= v · x− ((v · x)(x · x) + (v · y)(y · x))

But since x and y are orthogonal unit vectors,

(v − vp) · x = v · x− ((v · x)∥x∥2 + 0)

= v · x− v · x
= 0
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Similarly,

(v − vp) · y = v · y − vp · y
= v · y − ((v · x)x+ (v · y)y) · y
= v · y − ((v · x)(x · y) + (v · y)(y · y))
= v · y − (0 + (v · y)∥y∥2)
= v · y − v · y
= 0

This means that (v−vp) is the component of v that is orthogonal to P0.
Hence, it is unchanged by the rotation in P . Therefore, the image of v under
rotation by θ in P is equal to the image of vp under rotation by θ in P0 plus
(v − vp). That is,

rotP,θ(v) = rotP0,θ(vp) + (v − vp) (2)

In other words, it is sufficient to compute the rotation of vp in P0 by θ, and
adding (v − vp) to the result.

3.2 Rotation in P0

From (1), we see that the coordinates of vp in P0 with respect to x and y
are v ·x and v ·y, respectively. Let ϕ be the angle between vp and x. Then:

v · x = ∥vp∥ cosϕ (3)

v · y = ∥vp∥ sinϕ (4)

The resulting vector after rotating vp by θ makes an angle of (ϕ+θ) with
x. Therefore:

rotP0,θ(vp) = ∥vp∥ cos(ϕ+ θ)x+ ∥vp∥ sin(ϕ+ θ)y

Using the trigonometric additive identities and applying (3) and (4), we have:

∥vp∥ cos(ϕ+ θ) = ∥vp∥(cosϕ cos θ − sinϕ sin θ)

= (∥vp∥ cosϕ) cos θ − (∥vp∥ sinϕ) sin θ
= (v · x) cos θ − (v · y) sin θ (5)
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And:

∥vp∥ sin(ϕ+ θ) = ∥vp∥(sinϕ cos θ + cosϕ sin θ)

= (∥vp∥ sinϕ) cos θ + (∥vp∥ cosϕ) sin θ
= (v · y) cos θ + (v · x) sin θ (6)

Therefore, the image of vp under rotation in P0 by θ is:

rotP0,θ(vp) = ((v · x) cos θ − (v · y) sin θ)x+

((v · y) cos θ + (v · x) sin θ)y (7)

3.3 Rotation in P

Finally, substituting (1) and (7) into (2), we get:

rotP,θ(v) = ((v · x) cos θ − (v · y) sin θ)x+

((v · y) cos θ + (v · x) sin θ)y +

v − ((v · x)x+ (v · y)y)
= v + [(v · x) cos θ − (v · y) sin θ − (v · x)]x+

[(v · y) cos θ + (v · x) sin θ − (v · y)]y
= v + [(v · x)(cos θ − 1)− (v · y) sin θ]x+

[(v · y)(cos θ − 1) + (v · x) sin θ]y (8)

Equation (8) gives us a formula for rotating the vector v by θ in the plane
defined by x and y. Since it is written entirely in terms of vector operations
involving arbitrary-dimensional vectors v, x, and y, it can be applied to all
ℜn for n ≥ 2.

It can also be written in the following (notationally abusive) matrix form,
which is visually more appealing:

rotP,θ(v) = v + [ x y ]

[
(cos θ − 1) − sin θ

sin θ (cos θ − 1)

] [
v · x
v · y

]
(9)

In this form, its analogy with the familiar 2-dimensional rotation matrix
is clear. The extra −1 terms are because v appears as a separate term in the
equation. When v lies on the plane P0, the equation reduces to the familiar
2-dimensional form.
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